- 莫烦机器学习教程
- 有趣的机器学习
- 机器学习 (Machine Learning)
- 神经网络 (Neural Network)
- 卷积神经网络 CNN (Convolutional Neural Network)
- 循环神经网络 RNN (Recurrent Neural Network)
- LSTM RNN 循环神经网络 (LSTM)
- 自编码 (Autoencoder)
- 检验神经网络 (Evaluation)
- 特征标准化 (Feature Normalization)
- 选择好特征 (Good Features)
- 激励函数 (Activation Function)
- 过拟合 (Overfitting)
- 加速神经网络训练 (Speed Up Training)
- 处理不均衡数据 (Imbalanced data)
- 批标准化 (Batch Normalization)
- L1 / L2 正规化 (Regularization)
- 强化学习 (Reinforcement Learning)
- 强化学习方法汇总 (Reinforcement Learning)
- Q Leaning
- Sarsa
- Sarsa(lambda)
- DQN
- Policy Gradients
- Actor Critic
- Deep Deterministic Policy Gradient (DDPG)
- Asynchronous Advantage Actor-Critic (A3C)
- 强化学习教程
- Why?
- 课程要求
- 小例子
- Q-learning 算法更新
- Q-learning 思维决策
- Sarsa 算法更新
- Sarsa 思维决策
- Sarsa-lambda
- DQN 算法更新 (Tensorflow)
- DQN 神经网络 (Tensorflow)
- DQN 思维决策 (Tensorflow)
- OpenAI gym 环境库 (Tensorflow)
- Double DQN (Tensorflow)
- Prioritized Experience Replay (DQN) (Tensorflow)
- Dueling DQN (Tensorflow)
- Policy Gradients 算法更新 (Tensorflow)
- Policy Gradients 思维决策 (Tensorflow)
- Actor Critic (Tensorflow)
- Deep Deterministic Policy Gradient (DDPG) (Tensorflow)
- Asynchronous Advantage Actor-Critic (A3C) (Tensorflow)
- TensorFlow 教程
- 为什么选 Tensorflow
- 安装
- 神经网络在干嘛
- 处理结构
- 例子 2
- Session 会话控制
- Variable 变量
- Placeholder 传入值
- 激励函数 Activation Function
- 例子 3 添加层 def add_layer()
- 例子 3 建造神经网络
- 例子 3 结果可视化
- 优化器 optimizer
- Tensorboard 可视化好帮手 1
- Tensorboard 可视化好帮手 2
- Classification 分类学习
- Dropout 解决 overfitting
- CNN 卷积神经网络 1
- CNN 卷积神经网络 2
- CNN 卷积神经网络 3
- Saver 保存读取
- RNN 循环神经网络
- RNN LSTM 循环神经网络 (分类例子)
- RNN LSTM (回归例子)
- RNN LSTM (回归例子可视化)
- 自编码 Autoencoder (非监督学习)
- scope 命名方法
- Batch Normalization 批标准化
- PyTorch 教程
- Why?
- 安装
- Torch 或 Numpy
- 变量 (Variable)
- 激励函数 (Activation)
- 关系拟合 (回归)
- 区分类型 (分类)
- 快速搭建法
- 保存提取
- 批训练
- Optimizer 优化器
- CNN 卷积神经网络
- RNN 循环神经网络 (分类)
- RNN 循环神经网络 (回归)
- AutoEncoder (自编码/非监督学习)
- DQN 强化学习
- GAN (Generative Adversarial Nets 生成对抗网络)
- 为什么 Torch 是动态的
- GPU 加速运算
- Dropout 缓解过拟合
- Batch Normalization 批标准化
- Theano 教程
- Why?
- 安装
- 神经网络在做什么
- 基本用法
- Function 用法
- Shared 变量
- Activation function 激励函数
- 定义 Layer 类
- Regression 回归例子
- 可视化结果 回归例子
- Classification 分类学习
- Regularization 正规化
- Save 保存 提取
- 总结和更多
- Keras 教程
- Why?
- 安装
- 兼容 backend
- Regressor 回归
- Classifier 分类
- CNN 卷积神经网络
- RNN Classifier 循环神经网络
- RNN Regressor 循环神经网络
- Autoencoder 自编码
- Save & reload 保存提取
- Scikit learn 教程
- Why?
- 安装
- 选择学习方法
- 通用学习模式
- sklearn 强大数据库
- sklearn 常用属性与功能
- 正规化 Normalization
- 交叉验证 1 Cross-validation
- 交叉验证 2 Cross-validation
- 交叉验证 3 Cross-validation
- 保存模型
DQN
作者: Morvan 编辑: Morvan
今天我们会来说说强化学习中的一种强大武器, Deep Q Network 简称为 DQN. Google Deep mind 团队就是靠着这 DQN 使计算机玩电动玩得比我们还厉害。
注: 本文不会涉及数学推导. 大家可以在很多其他地方找到优秀的数学推导文章。
强化学习与神经网络
之前我们所谈论到的强化学习方法都是比较传统的方式,而如今,随着机器学习在日常生活中的各种应用,各种机器学习方法也在融汇,合并,升级. 而我们今天所要探讨的强化学习则是这么一种融合了神经网络和 Q learning 的方法,名字叫做 Deep Q Network. 这种新型结构是为什么被提出来呢? 原来,传统的表格形式的强化学习有这样一个瓶颈。
神经网络的作用
我们使用表格来存储每一个状态 state, 和在这个 state 每个行为 action 所拥有的 Q 值. 而当今问题是在太复杂,状态可以多到比天上的星星还多(比如下围棋). 如果全用表格来存储它们,恐怕我们的计算机有再大的内存都不够,而且每次在这么大的表格中搜索对应的状态也是一件很耗时的事. 不过,在机器学习中,有一种方法对这种事情很在行,那就是神经网络. 我们可以将状态和动作当成神经网络的输入,然后经过神经网络分析后得到动作的 Q 值,这样我们就没必要在表格中记录 Q 值,而是直接使用神经网络生成 Q 值. 还有一种形式的是这样,我们也能只输入状态值,输出所有的动作值,然后按照 Q learning 的原则,直接选择拥有最大值的动作当做下一步要做的动作. 我们可以想象,神经网络接受外部的信息,相当于眼睛鼻子耳朵收集信息,然后通过大脑加工输出每种动作的值,最后通过强化学习的方式选择动作。
更新神经网络
接下来我们基于第二种神经网络来分析,我们知道,神经网络是要被训练才能预测出准确的值. 那在强化学习中,神经网络是如何被训练的呢? 首先,我们需要 a1, a2 正确的 Q 值,这个 Q 值我们就用之前在 Q learning 中的 Q 现实来代替. 同样我们还需要一个 Q 估计 来实现神经网络的更新. 所以神经网络的的参数就是老的 NN 参数 加学习率 alpha 乘以 Q 现实 和 Q 估计 的差距. 我们整理一下。
我们通过 NN 预测出 Q(s2, a1) 和 Q(s2,a2) 的值,这就是 Q 估计. 然后我们选取 Q 估计中最大值的动作来换取环境中的奖励 reward. 而 Q 现实中也包含从神经网络分析出来的两个 Q 估计值,不过这个 Q 估计是针对于下一步在 s’ 的估计. 最后再通过刚刚所说的算法更新神经网络中的参数. 但是这并不是 DQN 会玩电动的根本原因. 还有两大因素支撑着 DQN 使得它变得无比强大. 这两大因素就是 Experience replay 和 Fixed Q-targets.
DQN 两大利器
简单来说, DQN 有一个记忆库用于学习之前的经历. 在之前的简介影片中提到过, Q learning 是一种 off-policy 离线学习法,它能学习当前经历着的,也能学习过去经历过的,甚至是学习别人的经历. 所以每次 DQN 更新的时候,我们都可以随机抽取一些之前的经历进行学习. 随机抽取这种做法打乱了经历之间的相关性,也使得神经网络更新更有效率. Fixed Q-targets 也是一种打乱相关性的机理,如果使用 fixed Q-targets, 我们就会在 DQN 中使用到两个结构相同但参数不同的神经网络,预测 Q 估计 的神经网络具备最新的参数,而预测 Q 现实 的神经网络使用的参数则是很久以前的. 有了这两种提升手段, DQN 才能在一些游戏中超越人类。
如果你觉得这篇文章或视频对你的学习很有帮助,请你也分享它,让它能再次帮助到更多的需要学习的人。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论