返回介绍

Python 编程指南(流)Beta

发布于 2025-05-02 18:19:14 字数 13112 浏览 0 评论 0 收藏 0

Flink 中的分析流程序是实现流数据集转换(例如,Filter,映射,Join,分组)的常规程序。流数据集最初是从某些源创建的(例如,通过读取文件或从集合中创建)。结果通过接收器返回,接收器可以例如将数据写入(分布式)文件或标准输出(例如命令行终端)。Flink 流处理程序可在各种环境中运行,独立运行或嵌入其他程序中。执行可以在本地 JVM 中执行,也可以在许多计算机的集群上执行。

为了创建自己的 Flink 流处理程序,我们建议您从 程序框架 开始, 逐步添加自己的 转换 。其余部分充当其他 算子操作和高级函数的参考。

Jython 框架

Flink Python 流 API 使用 Jython 框架(请参阅 http://www.jython.org/archive/21/docs/whatis.html )来驱动给定脚本的执行。Python 流层实际上是现有 Java 流 API 的薄打包层。

约束

使用 Jython 有两个主要限制:

  • 最新的 Python 支持版本是 2.7
  • 使用 Python C 扩展并不简单

流程序示例

以下流处理程序是 WordCount 的完整工作示例。您可以复制并粘贴代码以在本地运行它(请参阅本节后面的注释)。它计算句子流中每个单词的数量(不区分大小写),窗口大小为 50 毫秒,并将结果打印到标准输出中。

from org.apache.flink.streaming.api.functions.source import SourceFunction
from org.apache.flink.api.common.functions import FlatMapFunction, ReduceFunction
from org.apache.flink.api.java.functions import KeySelector
from org.apache.flink.streaming.api.windowing.time.Time import milliseconds

class Generator(SourceFunction):
  def __init__(self, num_iters):
    self._running = True
    self._num_iters = num_iters

  def run(self, ctx):
    counter = 0
    while self._running and counter < self._num_iters:
      ctx.collect('Hello World')
      counter += 1

  def cancel(self):
    self._running = False

class Tokenizer(FlatMapFunction):
  def flatMap(self, value, collector):
    for word in value.lower().split():
      collector.collect((1, word))

class Selector(KeySelector):
  def getKey(self, input):
    return input[1]

class Sum(ReduceFunction):
  def reduce(self, input1, input2):
    count1, word1 = input1
    count2, word2 = input2
    return (count1 + count2, word1)

def main(factory):
  env = factory.get_execution_environment()
  env.create_python_source(Generator(num_iters=1000)) \
    .flat_map(Tokenizer()) \
    .key_by(Selector()) \
    .time_window(milliseconds(50)) \
    .reduce(Sum()) \
    .output()
  env.execute()

笔记:

  • 在多节点群集上执行需要共享介质存储,需要预先配置(.eg HDFS)。
  • 给定脚本的输出定向到标准输出。因此,输出将写入相应的工作 .out 文件。如果脚本在 IntelliJ IDE 中执行,则输出将显示在控制台选项卡中。

程序框架

正如我们在示例中看到的那样,Flink 流程序看起来像普通的 Python 程序。每个程序包含相同的基本部分:

  1. 一个 main(factory) 函数定义,带有一个环境工厂参数 - 程序入口点,
  2. Environment 从工厂获得,
  3. 加载/创建初始数据,
  4. 指定此数据的转换,
  5. 指定计算结果的放置位置,和
  6. 执行你的程序。

我们现在将概述每个步骤,但请参阅相应部分以获取更多详细信息。

main(factory) 函数是必须的,Flink 执行层使用它来运行给定的 Python 流程序。

Environment 是所有 Flink 计划的基础。您可以使用工厂提供的工厂方法获得一个:

factory.get_execution_environment()

为了指定数据源,流运行环境有几种方法。要将文本文件作为一系列行读取,您可以使用:

env = factory.get_execution_environment()
text = env.read_text_file("file:///path/to/file")

这将为您提供一个 DataStream,然后您可以在其上应用转换。有关数据源和输入格式的更多信息,请参阅 数据源

拥有 DataStream 后,您可以应用转换来创建新的 DataStream,然后可以将其写入文件,再次转换或与其他 DataStream 结合使用。您可以通过使用自己的自定义转换函数调用 DataStream 上的方法来应用转换。例如,Map 转换如下所示:

class Doubler(MapFunction):
  def map(self, value):
    return value * 2

data.map(Doubler())

这将通过将原始 DataStream 中的每个值加倍来创建新的 DataStream。有关更多信息和所有转换的列表,请参阅 转换

一旦有了需要写入磁盘的 DataStream,就可以在 DataStream 上调用其中一个方法:

data.write_as_text("<file-path>")
data.write_as_text("<file-path>", mode=WriteMode.OVERWRITE)
data.output()

最后一种方法仅对本地机器上的开发/调试有用,它会将 DataSet 的内容输出到标准输出。(请注意,在集群中,结果将转到集群节点的标准输出流,最终会出现在工作程序的 .out 文件中)。前两个顾名思义。有关写入文件的更多信息,请参阅 数据接收器

一旦您指定的完整程序,你需要调用 executeEnvironment 。这将在本地计算机上执行或提交程序以在群集上执行,具体取决于 Flink 的启动方式。

项目设置

除了设置 Flink 外,无需额外的工作。使用 Jython 执行 Python 脚本意味着不需要外部包,程序就像是一个 jar 文件一样执行。

Python API 在 Windows / Linux / OSX 系统上进行了测试。

懒惰的评价

所有 Flink 程序都是懒惰地执行:当执行程序的 main 方法时,数据加载和转换不会直接发生。而是创建每个 算子操作并将其添加到程序的计划中。当 execute() 在 Environment 对象上调用其中一个方法时,实际执行这些 算子操作。程序是在本地执行还是在集群上执行取决于程序的环境。

懒惰的评估使您可以构建 Flink 作为一个整体计划单元执行的复杂程序。

转换

数据转换将一个或多个 DataStream 转换为新的 DataStream。程序可以将多个转换组合到复杂的程序集中。

本节简要概述了可用的转换。该 转换文档 与示例全部转换的完整描述。


转换: Map PythonDataStream→PythonDataStream

描述:采用一个数据元并生成一个数据元。

class Doubler(MapFunction):
  def map(self, value):
    return value * 2

data_stream.map(Doubler())

转换: FlatMap PythonDataStream→PythonDataStream

描述:采用一个数据元并生成零个,一个或多个数据元。

class Tokenizer(FlatMapFunction):
  def flatMap(self, word, collector):
    collector.collect((1, word))

data_stream.flat_map(Tokenizer())

转换: Filter PythonDataStream→PythonDataStream

描述:计算每个数据元的布尔函数,并保存函数返回 true 的数据元。

class GreaterThen1000(FilterFunction):
  def filter(self, value):
    return value &gt; 1000

data_stream.filter(GreaterThen1000())

转换: KeyBy PythonDataStream→PythonKeyedStream

描述:逻辑上将流分区为不相交的分区,每个分区包含相同 Keys 的数据元。在内部,这是通过散列分区实现的。见 如何指定键。此转换返回 PythonKeyedDataStream。

class Selector(KeySelector):
  def getKey(self, input):
    return input[1]  # Key by the second element in a tuple

data_stream.key_by(Selector()) // Key by field "someKey"

转换: Reduce PythonKeyedStream→PythonDataStream

描述:被 Keys 化数据流上的“滚动”Reduce。将当前数据元与最后一个 Reduce 的值组合并发出新值。

class Sum(ReduceFunction):
  def reduce(self, input1, input2):
    count1, val1 = input1
    count2, val2 = input2
    return (count1 + count2, val1)

data.reduce(Sum())

转换: Window PythonKeyedStream→PythonWindowedStream

描述:可以在已经分区的 KeyedStream 上定义 Windows。Windows 根据某些特征(例如,在最后 5 秒内到达的数据)对每个 Keys 中的数据进行分组。有关 窗口 的完整说明,请参见 windows。

keyed_stream.count_window(10, 5)  # Last 10 elements, sliding (jumping) by 5 elements

keyed_stream.time_window(milliseconds(30))  # Last 30 milliseconds of data

keted_stream.time_window(milliseconds(100), milliseconds(20))  # Last 100 milliseconds of data, sliding (jumping) by 20 milliseconds

转换: Window Apply PythonWindowedStream→PythonDataStream

描述:将一般函数应用于整个窗口。下面是一个手动求和窗口数据元的函数。

class WindowSum(WindowFunction):
  def apply(self, key, window, values, collector):
    sum = 0
    for value in values:
      sum += value[0]
    collector.collect((key, sum))

windowed_stream.apply(WindowSum())

转换: Window Reduce PythonWindowedStream→PythonDataStream

描述:将函数缩减函数应用于窗口并返回缩小的值。

class Sum(ReduceFunction):
  def reduce(self, input1, input2):
    count1, val1 = input1
    count2, val2 = input2
    return (count1 + count2, val1)

windowed_stream.reduce(Sum())

转换: Union PythonDataStream *→PythonDataStream

描述:两个或多个数据流的联合,创建包含来自所有流的所有数据元的新流。注意:如果将数据流与自身联合,则会在结果流中获取两次数据元。

data_stream.union(other_stream1, other_stream2, ...);

转换: Split PythonDataStream→PythonSplitStream

描述:根据某些标准将流拆分为两个或更多个流。

class StreamSelector(OutputSelector):
  def select(self, value):
    return ["even"] if value % 2 == 0 else ["odd"]

splited_stream = data_stream.split(StreamSelector())

转换: Select SplitStream→DataStream

描述:从拆分流中选择一个或多个流。

even_data_stream = splited_stream.select("even")
odd_data_stream = splited_stream.select("odd")
all_data_stream = splited_stream.select("even", "odd")

转换: Iterate PythonDataStream→PythonIterativeStream→PythonDataStream

描述:通过将一个 算子的输出重定向到某个先前的 算子,在流中创建“反馈”循环。这对于定义不断更新模型的算法特别有用。以下代码以流开头并连续应用迭代体。大于 0 的数据元将被发送回反馈通道,其余数据元将向下游转发。有关完整说明,请参阅 迭代

class MinusOne(MapFunction):
  def map(self, value):
    return value - 1

class PositiveNumber(FilterFunction):
  def filter(self, value):
    return value &gt; 0

class LessEquelToZero(FilterFunction):
  def filter(self, value):
    return value &lt;= 0

iteration = initial_stream.iterate(5000)
iteration_body = iteration.map(MinusOne())
feedback = iteration_body.filter(PositiveNumber())
iteration.close_with(feedback)
output = iteration_body.filter(LessEquelToZero())

将函数传递给 Flink

某些 算子操作需要用户定义的函数作为参数。所有函数都应该定义为派生自相关 Flink 函数的 Python 类。用户定义的函数被序列化并发送到 TaskManagers 以供执行。

class Filter(FilterFunction):
  def filter(self, value):
    return value > 5

data_stream.filter(Filter())

丰富的函数(.eg RichFilterFunction )允许定义(覆盖)可选 算子操作: openclose 。用户可以使用这些函数进行初始化和清理。

class Tokenizer(RichMapFunction):
  def open(self, config):
    pass
  def close(self):
    pass
  def map(self, value):
    pass

data_stream.map(Tokenizer())

open 在启动流式传输管道之前,Worker 会调用该函数。 close 在流管道停止后,Worker 调用该函数。

数据类型

Flink 的 Python Streaming API 支持原始 Python 类型(int,float,bool,string),以及字节数组和用户定义的类。

class Person:
  def __init__(self, name, age):
    self.name = name
    self.age = age

class Tokenizer(MapFunction):
  def map(self, value):
    return (1, Person(*value))

data_stream.map(Tokenizer())

元组/列表

您可以将元组(或列表)用于复合类型。Python 元组映射到 Jython 本机对应类型,这些类型由 Python 打包器薄层处理。

word_counts = env.from_elements(("hello", 1), ("world",2))

class Tokenizer(MapFunction):
  def map(self, value):
    return value[1]

counts = word_counts.map(Tokenizer())

数据源

数据源创建初始数据流,例如来自文件或集合。

基于文件的:

  • read_text_file(path) - 按行读取文件并将其作为字符串流返回。

基于集合:

  • from_elements(*args) - 从所有数据元创建数据流。
  • generate_sequence(from, to) - 并行生成给定间隔中的数字序列。

例子

env  = factory.get_execution_environment()

\# read text file from local files system
localLiens = env.read_text("file:///path/to/my/textfile")

\# read text file from a HDFS running at nnHost:nnPort
hdfsLines = env.read_text("hdfs://nnHost:nnPort/path/to/my/textfile")

\# create a set from some given elements
values = env.from_elements("Foo", "bar", "foobar", "fubar")

\# generate a number sequence
numbers = env.generate_sequence(1, 10000000)

数据接收

数据接收器使用 DataStream 并用于存储或返回它们:

  • write_as_text() - 按字符串顺序写入数据元。通过调用每个数据元的 str() 方法获得字符串。
  • output() - 打印标准输出上每个数据元的 str() 值。
  • write_to_socket() - 将 DataStream 作为字节数组写入套接字[host:port]。

可以将 DataStream 输入到多个 算子操作。程序可以编写或打印数据流,同时对它们执行其他转换。

例子

标准数据接收方法:

 write DataStream to a file on the local file system
textData.write_as_text("file:///my/result/on/localFS")

 write DataStream to a file on a HDFS with a namenode running at nnHost:nnPort
textData.write_as_text("hdfs://nnHost:nnPort/my/result/on/localFS")

 write DataStream to a file and overwrite the file if it exists
textData.write_as_text("file:///my/result/on/localFS", WriteMode.OVERWRITE)

 this writes tuples in the text formatting "(a, b, c)", rather than as CSV lines
values.write_as_text("file:///path/to/the/result/file")

并行执行

本节介绍如何在 Flink 中配置程序的并行执行。Flink 程序由多个任务( 算子,数据源和接收器)组成。任务被分成几个并行实例以供执行,每个并行实例处理任务输入数据的子集。任务的并行实例数称为 并行__度 或 并行__度(DOP) 。

可以在不同级别的 Flink 中指定任务的并行度。

运行环境级别

Flink 程序在 运行环境 的上下文中 执行 。运行环境为其执行的所有算子,数据源和数据接收器定义默认并行性。可以通过显式配置 算子的并行性来覆盖运行环境并行性。

可以通过调用 set_parallelism() 方法来指定运行环境的默认并行性 。要以并行方式执行 WordCount 示例程序的所有 算子,数据源和数据接收器,请 3 按如下方式设置运行环境的默认并行度:

env = factory.get_execution_environment()
env.set_parallelism(3)

text.flat_map(Tokenizer()) \
  .key_by(Selector()) \
  .time_window(milliseconds(30)) \
  .reduce(Sum()) \
  .print()

env.execute()

系统级别

可以通过设置 parallelism.default 属性来定义所有运行环境的系统范围默认并行度 ./conf/flink-conf.yaml 。有关详细信息,请参阅 配置 文档

执行计划

要使用 Flink 运行计划,请转到 Flink 分发,然后从/ bin 文件夹运行 pyflink-stream.sh 脚本。包含该计划的脚本必须作为第一个参数传递,然后是许多其他 Python 包,最后由 - 将被提供给脚本的其他参数分隔。

./bin/pyflink-stream.sh <Script>[ <pathToPackage1>[ <pathToPackageX]][ - <param1>[ <paramX>]]

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。
列表为空,暂无数据
    我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。