- 莫烦机器学习教程
- 有趣的机器学习
- 机器学习 (Machine Learning)
- 神经网络 (Neural Network)
- 卷积神经网络 CNN (Convolutional Neural Network)
- 循环神经网络 RNN (Recurrent Neural Network)
- LSTM RNN 循环神经网络 (LSTM)
- 自编码 (Autoencoder)
- 检验神经网络 (Evaluation)
- 特征标准化 (Feature Normalization)
- 选择好特征 (Good Features)
- 激励函数 (Activation Function)
- 过拟合 (Overfitting)
- 加速神经网络训练 (Speed Up Training)
- 处理不均衡数据 (Imbalanced data)
- 批标准化 (Batch Normalization)
- L1 / L2 正规化 (Regularization)
- 强化学习 (Reinforcement Learning)
- 强化学习方法汇总 (Reinforcement Learning)
- Q Leaning
- Sarsa
- Sarsa(lambda)
- DQN
- Policy Gradients
- Actor Critic
- Deep Deterministic Policy Gradient (DDPG)
- Asynchronous Advantage Actor-Critic (A3C)
- 强化学习教程
- Why?
- 课程要求
- 小例子
- Q-learning 算法更新
- Q-learning 思维决策
- Sarsa 算法更新
- Sarsa 思维决策
- Sarsa-lambda
- DQN 算法更新 (Tensorflow)
- DQN 神经网络 (Tensorflow)
- DQN 思维决策 (Tensorflow)
- OpenAI gym 环境库 (Tensorflow)
- Double DQN (Tensorflow)
- Prioritized Experience Replay (DQN) (Tensorflow)
- Dueling DQN (Tensorflow)
- Policy Gradients 算法更新 (Tensorflow)
- Policy Gradients 思维决策 (Tensorflow)
- Actor Critic (Tensorflow)
- Deep Deterministic Policy Gradient (DDPG) (Tensorflow)
- Asynchronous Advantage Actor-Critic (A3C) (Tensorflow)
- TensorFlow 教程
- 为什么选 Tensorflow
- 安装
- 神经网络在干嘛
- 处理结构
- 例子 2
- Session 会话控制
- Variable 变量
- Placeholder 传入值
- 激励函数 Activation Function
- 例子 3 添加层 def add_layer()
- 例子 3 建造神经网络
- 例子 3 结果可视化
- 优化器 optimizer
- Tensorboard 可视化好帮手 1
- Tensorboard 可视化好帮手 2
- Classification 分类学习
- Dropout 解决 overfitting
- CNN 卷积神经网络 1
- CNN 卷积神经网络 2
- CNN 卷积神经网络 3
- Saver 保存读取
- RNN 循环神经网络
- RNN LSTM 循环神经网络 (分类例子)
- RNN LSTM (回归例子)
- RNN LSTM (回归例子可视化)
- 自编码 Autoencoder (非监督学习)
- scope 命名方法
- Batch Normalization 批标准化
- PyTorch 教程
- Why?
- 安装
- Torch 或 Numpy
- 变量 (Variable)
- 激励函数 (Activation)
- 关系拟合 (回归)
- 区分类型 (分类)
- 快速搭建法
- 保存提取
- 批训练
- Optimizer 优化器
- CNN 卷积神经网络
- RNN 循环神经网络 (分类)
- RNN 循环神经网络 (回归)
- AutoEncoder (自编码/非监督学习)
- DQN 强化学习
- GAN (Generative Adversarial Nets 生成对抗网络)
- 为什么 Torch 是动态的
- GPU 加速运算
- Dropout 缓解过拟合
- Batch Normalization 批标准化
- Theano 教程
- Why?
- 安装
- 神经网络在做什么
- 基本用法
- Function 用法
- Shared 变量
- Activation function 激励函数
- 定义 Layer 类
- Regression 回归例子
- 可视化结果 回归例子
- Classification 分类学习
- Regularization 正规化
- Save 保存 提取
- 总结和更多
- Keras 教程
- Why?
- 安装
- 兼容 backend
- Regressor 回归
- Classifier 分类
- CNN 卷积神经网络
- RNN Classifier 循环神经网络
- RNN Regressor 循环神经网络
- Autoencoder 自编码
- Save & reload 保存提取
- Scikit learn 教程
- Why?
- 安装
- 选择学习方法
- 通用学习模式
- sklearn 强大数据库
- sklearn 常用属性与功能
- 正规化 Normalization
- 交叉验证 1 Cross-validation
- 交叉验证 2 Cross-validation
- 交叉验证 3 Cross-validation
- 保存模型
文章来源于网络收集而来,版权归原创者所有,如有侵权请及时联系!
交叉验证 2 Cross-validation
作者: Bhan 编辑: Morvan
- 学习资料:
sklearn.learning_curve
中的 learning curve 可以很直观的看出我们的 model 学习的进度,对比发现有没有 overfitting 的问题. 然后我们可以对我们的 model 进行调整,克服 overfitting 的问题。
例子 - 藉由学习曲线(Learning curve) 来检视过拟合(Overfitting) 的问题
加载对应模块:
from sklearn.learning_curve import learning_curve #学习曲线模块
from sklearn.datasets import load_digits #digits 数据集
from sklearn.svm import SVC #Support Vector Classifier
import matplotlib.pyplot as plt #可视化模块
import numpy as np
加载 digits 数据集,其包含的是手写体的数字,从 0 到 9。数据集总共有 1797 个样本,每个样本由 64 个特征组成, 分别为其手写体对应的 8×8 像素表示,每个特征取值 0~16。
digits = load_digits()
X = digits.data
y = digits.target
观察样本由小到大的学习曲线变化,采用 K 折交叉验证 cv=10
, 选择平均方差检视模型效能 scoring='mean_squared_error'
, 样本由小到大分成 5 轮检视学习曲线 (10%, 25%, 50%, 75%, 100%)
:
train_sizes, train_loss, test_loss = learning_curve(
SVC(gamma=0.001), X, y, cv=10, scoring='mean_squared_error',
train_sizes=[0.1, 0.25, 0.5, 0.75, 1])
#平均每一轮所得到的平均方差(共 5 轮,分别为样本 10%、25%、50%、75%、100%)
train_loss_mean = -np.mean(train_loss, axis=1)
test_loss_mean = -np.mean(test_loss, axis=1)
可视化图形:
plt.plot(train_sizes, train_loss_mean, 'o-', color="r",
label="Training")
plt.plot(train_sizes, test_loss_mean, 'o-', color="g",
label="Cross-validation")
plt.xlabel("Training examples")
plt.ylabel("Loss")
plt.legend(loc="best")
plt.show()
如果你觉得这篇文章或视频对你的学习很有帮助,请你也分享它,让它能再次帮助到更多的需要学习的人。
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论