- 莫烦机器学习教程
- 有趣的机器学习
- 机器学习 (Machine Learning)
- 神经网络 (Neural Network)
- 卷积神经网络 CNN (Convolutional Neural Network)
- 循环神经网络 RNN (Recurrent Neural Network)
- LSTM RNN 循环神经网络 (LSTM)
- 自编码 (Autoencoder)
- 检验神经网络 (Evaluation)
- 特征标准化 (Feature Normalization)
- 选择好特征 (Good Features)
- 激励函数 (Activation Function)
- 过拟合 (Overfitting)
- 加速神经网络训练 (Speed Up Training)
- 处理不均衡数据 (Imbalanced data)
- 批标准化 (Batch Normalization)
- L1 / L2 正规化 (Regularization)
- 强化学习 (Reinforcement Learning)
- 强化学习方法汇总 (Reinforcement Learning)
- Q Leaning
- Sarsa
- Sarsa(lambda)
- DQN
- Policy Gradients
- Actor Critic
- Deep Deterministic Policy Gradient (DDPG)
- Asynchronous Advantage Actor-Critic (A3C)
- 强化学习教程
- Why?
- 课程要求
- 小例子
- Q-learning 算法更新
- Q-learning 思维决策
- Sarsa 算法更新
- Sarsa 思维决策
- Sarsa-lambda
- DQN 算法更新 (Tensorflow)
- DQN 神经网络 (Tensorflow)
- DQN 思维决策 (Tensorflow)
- OpenAI gym 环境库 (Tensorflow)
- Double DQN (Tensorflow)
- Prioritized Experience Replay (DQN) (Tensorflow)
- Dueling DQN (Tensorflow)
- Policy Gradients 算法更新 (Tensorflow)
- Policy Gradients 思维决策 (Tensorflow)
- Actor Critic (Tensorflow)
- Deep Deterministic Policy Gradient (DDPG) (Tensorflow)
- Asynchronous Advantage Actor-Critic (A3C) (Tensorflow)
- TensorFlow 教程
- 为什么选 Tensorflow
- 安装
- 神经网络在干嘛
- 处理结构
- 例子 2
- Session 会话控制
- Variable 变量
- Placeholder 传入值
- 激励函数 Activation Function
- 例子 3 添加层 def add_layer()
- 例子 3 建造神经网络
- 例子 3 结果可视化
- 优化器 optimizer
- Tensorboard 可视化好帮手 1
- Tensorboard 可视化好帮手 2
- Classification 分类学习
- Dropout 解决 overfitting
- CNN 卷积神经网络 1
- CNN 卷积神经网络 2
- CNN 卷积神经网络 3
- Saver 保存读取
- RNN 循环神经网络
- RNN LSTM 循环神经网络 (分类例子)
- RNN LSTM (回归例子)
- RNN LSTM (回归例子可视化)
- 自编码 Autoencoder (非监督学习)
- scope 命名方法
- Batch Normalization 批标准化
- PyTorch 教程
- Why?
- 安装
- Torch 或 Numpy
- 变量 (Variable)
- 激励函数 (Activation)
- 关系拟合 (回归)
- 区分类型 (分类)
- 快速搭建法
- 保存提取
- 批训练
- Optimizer 优化器
- CNN 卷积神经网络
- RNN 循环神经网络 (分类)
- RNN 循环神经网络 (回归)
- AutoEncoder (自编码/非监督学习)
- DQN 强化学习
- GAN (Generative Adversarial Nets 生成对抗网络)
- 为什么 Torch 是动态的
- GPU 加速运算
- Dropout 缓解过拟合
- Batch Normalization 批标准化
- Theano 教程
- Why?
- 安装
- 神经网络在做什么
- 基本用法
- Function 用法
- Shared 变量
- Activation function 激励函数
- 定义 Layer 类
- Regression 回归例子
- 可视化结果 回归例子
- Classification 分类学习
- Regularization 正规化
- Save 保存 提取
- 总结和更多
- Keras 教程
- Why?
- 安装
- 兼容 backend
- Regressor 回归
- Classifier 分类
- CNN 卷积神经网络
- RNN Classifier 循环神经网络
- RNN Regressor 循环神经网络
- Autoencoder 自编码
- Save & reload 保存提取
- Scikit learn 教程
- Why?
- 安装
- 选择学习方法
- 通用学习模式
- sklearn 强大数据库
- sklearn 常用属性与功能
- 正规化 Normalization
- 交叉验证 1 Cross-validation
- 交叉验证 2 Cross-validation
- 交叉验证 3 Cross-validation
- 保存模型
Deep Deterministic Policy Gradient (DDPG)
作者: Morvan 编辑: Morvan
今天我们会来说说强化学习中的一种 actor critic 的提升方式 Deep Deterministic Policy Gradient (DDPG), DDPG 最大的优势就是能够在连续动作上更有效地学习。
注: 本文不会涉及数学推导. 大家可以在很多其他地方找到优秀的数学推导文章。
拆分细讲
它吸收了 Actor critic 让 Policy gradient 单步更新的精华,而且还吸收让计算机学会玩游戏的 DQN 的精华,合并成了一种新算法,叫做 Deep Deterministic Policy Gradient. 那 DDPG 到底是什么样的算法呢,我们就拆开来分析,我们将 DDPG 分成 ‘Deep’ 和 ‘Deterministic Policy Gradient’, 然后 ‘Deterministic Policy Gradient’ 又能被细分为 ‘Deterministic’ 和 ‘Policy Gradient’, 接下来,我们就开始一个个分析啦。
Deep 和 DQN
Deep 顾名思义,就是走向更深层次,我们在 DQN 的影片当中提到过,使用一个记忆库和两套结构相同,但参数更新频率不同的神经网络能有效促进学习. 那我们也把这种思想运用到 DDPG 当中,使 DDPG 也具备这种优良形式. 但是 DDPG 的神经网络形式却比 DQN 的要复杂一点点。
Deterministic Policy Gradient
Policy gradient 我们也在之前的短片中提到过,相比其他的强化学习方法,它能被用来在连续动作上进行动作的筛选 . 而且筛选的时候是根据所学习到的动作分布随机进行筛选,而 Deterministic 有点看不下去, Deterministic 说: 我说兄弟,你其实在做动作的时候没必要那么不确定,那么犹豫嘛,反正你最终都只是要输出一个动作值,干嘛要随机,铁定一点,有什么不好. 所以 Deterministic 就改变了输出动作的过程,斩钉截铁的只在连续动作上输出一个动作值。
DDPG 神经网络
现在我们来说说 DDPG 中所用到的神经网络. 它其实和我们之前提到的 Actor-Critic 形式差不多,也需要有基于 策略 Policy 的神经网络 和基于 价值 Value 的神经网络,但是为了体现 DQN 的思想,每种神经网络我们都需要再细分为两个, Policy Gradient 这边,我们有估计网络和现实网络,估计网络用来输出实时的动作,供 actor 在现实中实行. 而现实网络则是用来更新价值网络系统的. 所以我们再来看看价值系统这边,我们也有现实网络和估计网络,他们都在输出这个状态的价值,而输入端却有不同,状态现实网络这边会拿着从动作现实网络来的动作加上状态的观测值加以分析,而状态估计网络则是拿着当时 Actor 施加的动作当做输入.在实际运用中, DDPG 的这种做法的确带来了更有效的学习过程。
如果你觉得这篇文章或视频对你的学习很有帮助,请你也分享它,让它能再次帮助到更多的需要学习的人。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论