- Apache Flink 文档
- 概念
- 数据流编程模型
- 分布式运行时环境
- 教程
- API 教程
- DataStream API 教程
- Setup 教程
- 本地安装教程
- 在 Windows 上运行 Flink
- 例子
- 批处理示例
- 应用开发
- 项目构建设置
- Java 项目模板
- Scala 的项目模板
- 配置依赖关系,连接器,库
- 基础 API 概念
- Scala API 扩展
- Java Lambda 表达式
- Flink DataStream API 编程指南
- 活动时间
- 事件时间/处理时间/摄取时间
- 活动时间和水印
- 状态与容错
- 算子
- DataStream 转换
- 物理分区
- 任务链和资源组
- 流连接器
- 旁路输出
- Python 编程指南(流)Beta
- 测试
- 实验特点
- Flink DataSet API 编程指南
- 数据集转换
- 容错
- 在数据集中压缩数据元
- 迭代
- Python 编程指南 Beta
- 连接器
- Hadoop 兼容性测试版
- 本地执行
- 群集执行
- Table API 和 SQL
- 概念和通用 API
- 流处理概念
- 连接到外部系统
- Table API
- SQL
- 内置函数
- 用户定义的源和接收器
- 用户定义的函数
- SQL 客户端测试版
- 数据类型和序列化
- 为 Flink 程序注册自定义序列化程序
- 管理执行
- 执行配置
- 程序打包和分布式执行
- 并行执行
- 执行计划
- 重启策略
- 类库
- FlinkCEP - Flink 的复杂事件处理
- 风暴兼容性 Beta
- 项目配置
- 执行 Storm 拓扑
- 在 Flink 流程序中嵌入 Storm 算子
- Flink Extensions
- Storm 兼容性示例
- Gelly:Flink Graph API
- 图 API
- FlinkML - Flink 的机器学习
- 最佳实践
- API 迁移指南
- 部署和运营
- 集群和部署
- 独立群集
- YARN 设置
- Mesos 设置
- Kubernetes 设置
- Docker 设置
- 亚马逊网络服务(AWS)
- Google Compute Engine 设置
- 先决条件
- 在 Google Compute Engine 上部署 Flink
- MapR 设置
- Hadoop 集成
- JobManager 高可用性(HA)
- 状态和容错
- 检查点
- 保存点
- 状态后台
- 调整检查点和大状态
- 配置
- 生产准备清单
- 命令行界面
- Scala REPL
- Kerberos 身份验证设置和配置
- SSL 设置
- 文件系统
- 升级应用程序和 Flink 版本
- 调试和监控
- 度量
- 如何使用日志记录
- 历史服务器
- 监控检查点
- 监测背压
- 监控 REST API
- 调试 Windows 和事件时间
- 调试类加载
- 应用程序分析
- 使用 Java Flight Recorder 进行性能分析
- 使用 JITWatch 进行分析
- Flink Development
- 将 Flink 导入 IDE
- 从 Source 建立 Flink
- 内幕
- 组件堆栈
- 数据流容错
- 工作和调度
- 任务生命周期
- 文件系统
- 实现
- 坚持保证
- 更新文件内容
- 覆盖文件
- 线程安全
文章来源于网络收集而来,版权归原创者所有,如有侵权请及时联系!
在数据集中压缩数据元
在某些算法中,可能需要为数据集数据元分配唯一标识符。本文档展示了如何将 DataSetUtils 用于此目的。
压缩密集索引
zipWithIndex
为数据元分配连续标签,接收数据集作为输入并返回 (unique id, initial value)
2 元组的新数据集。此过程需要两次传递,首先计算然后标记数据元,并且由于计数的同步而不能流水线化。该替代方案 zipWithUniqueId
以流水线方式工作,并且在唯一标签足够时是优选的。例如,以下代码:
ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment();
env.setParallelism(2);
DataSet<String> in = env.fromElements("A", "B", "C", "D", "E", "F", "G", "H");
DataSet<Tuple2<Long, String>> result = DataSetUtils.zipWithIndex(in);
result.writeAsCsv(resultPath, "\n", ",");
env.execute();
import org.apache.flink.api.scala._
val env: ExecutionEnvironment = ExecutionEnvironment.getExecutionEnvironment
env.setParallelism(2)
val input: DataSet[String] = env.fromElements("A", "B", "C", "D", "E", "F", "G", "H")
val result: DataSet[(Long, String)] = input.zipWithIndex
result.writeAsCsv(resultPath, "\n", ",")
env.execute()
from flink.plan.Environment import get_environment
env = get_environment()
env.set_parallelism(2)
input = env.from_elements("A", "B", "C", "D", "E", "F", "G", "H")
result = input.zip_with_index()
result.write_text(result_path)
env.execute()
可以产生元组:(0,G),(1,H),(2,A),(3,B),(4,C),(5,D),(6,E),(7, F)
使用唯一标识符进行压缩
在许多情况下,可能不需要分配连续标签。 zipWithUniqueId
以流水线方式工作,加快标签分配过程。此方法接收数据集作为输入,并返回 (unique id, initial value)
2 元组的新数据集。例如,以下代码:
ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment();
env.setParallelism(2);
DataSet<String> in = env.fromElements("A", "B", "C", "D", "E", "F", "G", "H");
DataSet<Tuple2<Long, String>> result = DataSetUtils.zipWithUniqueId(in);
result.writeAsCsv(resultPath, "\n", ",");
env.execute();
import org.apache.flink.api.scala._
val env: ExecutionEnvironment = ExecutionEnvironment.getExecutionEnvironment
env.setParallelism(2)
val input: DataSet[String] = env.fromElements("A", "B", "C", "D", "E", "F", "G", "H")
val result: DataSet[(Long, String)] = input.zipWithUniqueId
result.writeAsCsv(resultPath, "\n", ",")
env.execute()
可以产生元组:(0,G),(1,A),(2,H),(3,B),(5,C),(7,D),(9,E),(11, F)
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论