- 莫烦机器学习教程
- 有趣的机器学习
- 机器学习 (Machine Learning)
- 神经网络 (Neural Network)
- 卷积神经网络 CNN (Convolutional Neural Network)
- 循环神经网络 RNN (Recurrent Neural Network)
- LSTM RNN 循环神经网络 (LSTM)
- 自编码 (Autoencoder)
- 检验神经网络 (Evaluation)
- 特征标准化 (Feature Normalization)
- 选择好特征 (Good Features)
- 激励函数 (Activation Function)
- 过拟合 (Overfitting)
- 加速神经网络训练 (Speed Up Training)
- 处理不均衡数据 (Imbalanced data)
- 批标准化 (Batch Normalization)
- L1 / L2 正规化 (Regularization)
- 强化学习 (Reinforcement Learning)
- 强化学习方法汇总 (Reinforcement Learning)
- Q Leaning
- Sarsa
- Sarsa(lambda)
- DQN
- Policy Gradients
- Actor Critic
- Deep Deterministic Policy Gradient (DDPG)
- Asynchronous Advantage Actor-Critic (A3C)
- 强化学习教程
- Why?
- 课程要求
- 小例子
- Q-learning 算法更新
- Q-learning 思维决策
- Sarsa 算法更新
- Sarsa 思维决策
- Sarsa-lambda
- DQN 算法更新 (Tensorflow)
- DQN 神经网络 (Tensorflow)
- DQN 思维决策 (Tensorflow)
- OpenAI gym 环境库 (Tensorflow)
- Double DQN (Tensorflow)
- Prioritized Experience Replay (DQN) (Tensorflow)
- Dueling DQN (Tensorflow)
- Policy Gradients 算法更新 (Tensorflow)
- Policy Gradients 思维决策 (Tensorflow)
- Actor Critic (Tensorflow)
- Deep Deterministic Policy Gradient (DDPG) (Tensorflow)
- Asynchronous Advantage Actor-Critic (A3C) (Tensorflow)
- TensorFlow 教程
- 为什么选 Tensorflow
- 安装
- 神经网络在干嘛
- 处理结构
- 例子 2
- Session 会话控制
- Variable 变量
- Placeholder 传入值
- 激励函数 Activation Function
- 例子 3 添加层 def add_layer()
- 例子 3 建造神经网络
- 例子 3 结果可视化
- 优化器 optimizer
- Tensorboard 可视化好帮手 1
- Tensorboard 可视化好帮手 2
- Classification 分类学习
- Dropout 解决 overfitting
- CNN 卷积神经网络 1
- CNN 卷积神经网络 2
- CNN 卷积神经网络 3
- Saver 保存读取
- RNN 循环神经网络
- RNN LSTM 循环神经网络 (分类例子)
- RNN LSTM (回归例子)
- RNN LSTM (回归例子可视化)
- 自编码 Autoencoder (非监督学习)
- scope 命名方法
- Batch Normalization 批标准化
- PyTorch 教程
- Why?
- 安装
- Torch 或 Numpy
- 变量 (Variable)
- 激励函数 (Activation)
- 关系拟合 (回归)
- 区分类型 (分类)
- 快速搭建法
- 保存提取
- 批训练
- Optimizer 优化器
- CNN 卷积神经网络
- RNN 循环神经网络 (分类)
- RNN 循环神经网络 (回归)
- AutoEncoder (自编码/非监督学习)
- DQN 强化学习
- GAN (Generative Adversarial Nets 生成对抗网络)
- 为什么 Torch 是动态的
- GPU 加速运算
- Dropout 缓解过拟合
- Batch Normalization 批标准化
- Theano 教程
- Why?
- 安装
- 神经网络在做什么
- 基本用法
- Function 用法
- Shared 变量
- Activation function 激励函数
- 定义 Layer 类
- Regression 回归例子
- 可视化结果 回归例子
- Classification 分类学习
- Regularization 正规化
- Save 保存 提取
- 总结和更多
- Keras 教程
- Why?
- 安装
- 兼容 backend
- Regressor 回归
- Classifier 分类
- CNN 卷积神经网络
- RNN Classifier 循环神经网络
- RNN Regressor 循环神经网络
- Autoencoder 自编码
- Save & reload 保存提取
- Scikit learn 教程
- Why?
- 安装
- 选择学习方法
- 通用学习模式
- sklearn 强大数据库
- sklearn 常用属性与功能
- 正规化 Normalization
- 交叉验证 1 Cross-validation
- 交叉验证 2 Cross-validation
- 交叉验证 3 Cross-validation
- 保存模型
自编码 Autoencoder (非监督学习)
作者: Hao 编辑: Morvan
- 学习资料:
- 相关代码
- 机器学习-简介系列 Autoencoder
Autoencoder 简单来说就是将有很多 Feature 的数据进行压缩,之后再进行解压的过程。 本质上来说,它也是一个对数据的非监督学习,如果大家知道 PCA (Principal component analysis), 与 Autoencoder 相类似,它的主要功能即对数据进行非监督学习,并将压缩之后得到的“特征值”,这一中间结果正类似于 PCA 的结果。 之后再将压缩过的“特征值”进行解压,得到的最终结果与原始数据进行比较,对此进行非监督学习。如果大家还不是非常了解,请观 看机器学习简介 系列里的 Autoencoder 那一集; 如果对它已经有了一定的了解,那么便可以进行代码阶段的学习了。大概过程如下图所示:
今天的代码,我们会运用两个类型:
- 第一,是通过 Feature 的压缩并解压,并将结果与原始数据进行对比,观察处理过后的数据是不是如预期跟原始数据很相像。(这里会用到 MNIST 数据)
第二,我们只看
encoder
压缩的过程,使用它将一个数据集压缩到只有两个 Feature 时,将数据放入一个二维坐标系内,特征压缩的效果如下:同样颜色的点,代表分到同一类的数据。(Lebel 相同)
下面进入代码环节吧:
类型一: Autoencoder
# Parameter
learning_rate = 0.01
training_epochs = 5 # 五组训练
batch_size = 256
display_step = 1
examples_to_show = 10
我们的 MNIST 数据,每张图片大小是 28x28 pix,即 784 Features:
# Network Parameters
n_input = 784 # MNIST data input (img shape: 28*28)
- 在压缩环节:我们要把这个 Features 不断压缩,经过第一个隐藏层压缩至 256 个 Features,再经过第二个隐藏层压缩至 128 个。
- 在解压环节:我们将 128 个 Features 还原至 256 个,再经过一步还原至 784 个。
- 在对比环节:比较原始数据与还原后的拥有 784 Features 的数据进行 cost 的对比,根据 cost 来提升我的 Autoencoder 的准确率,下图是两个隐藏层的 weights 和 biases 的定义:
# hidden layer settings
n_hidden_1 = 256 # 1st layer num features
n_hidden_2 = 128 # 2nd layer num features
weights = {
'encoder_h1':tf.Variable(tf.random_normal([n_input,n_hidden_1])),
'encoder_h2': tf.Variable(tf.random_normal([n_hidden_1,n_hidden_2])),
'decoder_h1': tf.Variable(tf.random_normal([n_hidden_2,n_hidden_1])),
'decoder_h2': tf.Variable(tf.random_normal([n_hidden_1, n_input])),
}
biases = {
'encoder_b1': tf.Variable(tf.random_normal([n_hidden_1])),
'encoder_b2': tf.Variable(tf.random_normal([n_hidden_2])),
'decoder_b1': tf.Variable(tf.random_normal([n_hidden_1])),
'decoder_b2': tf.Variable(tf.random_normal([n_input])),
}
下面来定义 Encoder 和 Decoder ,使用的 Activation function 是 sigmoid
, 压缩之后的值应该在 [0,1] 这个范围内。在 decoder
过程中,通常使用对应于 encoder
的 Activation function:
# Building the encoder
def encoder(x):
# Encoder Hidden layer with sigmoid activation #1
layer_1 = tf.nn.sigmoid(tf.add(tf.matmul(x, weights['encoder_h1']),
biases['encoder_b1']))
# Decoder Hidden layer with sigmoid activation #2
layer_2 = tf.nn.sigmoid(tf.add(tf.matmul(layer_1, weights['encoder_h2']),
biases['encoder_b2']))
return layer_2
# Building the decoder
def decoder(x):
# Encoder Hidden layer with sigmoid activation #1
layer_1 = tf.nn.sigmoid(tf.add(tf.matmul(x, weights['decoder_h1']),
biases['decoder_b1']))
# Decoder Hidden layer with sigmoid activation #2
layer_2 = tf.nn.sigmoid(tf.add(tf.matmul(layer_1, weights['decoder_h2']),
biases['decoder_b2']))
return layer_2
来实现 Encoder 和 Decoder 输出的结果:
# Construct model
encoder_op = encoder(X) # 128 Features
decoder_op = decoder(encoder_op) # 784 Features
# Prediction
y_pred = decoder_op # After
# Targets (Labels) are the input data.
y_true = X # Before
再通过我们非监督学习进行对照,即对 “原始的有 784 Features 的数据集” 和 “通过 ‘Prediction’ 得出的有 784 Features 的数据集” 进行最小二乘法的计算,并且使 cost 最小化:
# Define loss and optimizer, minimize the squared error
cost = tf.reduce_mean(tf.pow(y_true - y_pred, 2))
optimizer = tf.train.AdamOptimizer(learning_rate).minimize(cost)
最后,通过 Matplotlib
的 pyplot
模块将结果显示出来, 注意在输出时 MNIST 数据集经过压缩之后 x 的最大值是 1,而非 255:
# Launch the graph
with tf.Session() as sess:
# tf 马上就要废弃 tf.initialize_all_variables() 这种写法
# 替换成下面:
sess.run(tf.global_variables_initializer())
total_batch = int(mnist.train.num_examples/batch_size)
# Training cycle
for epoch in range(training_epochs):
# Loop over all batches
for i in range(total_batch):
batch_xs, batch_ys = mnist.train.next_batch(batch_size) # max(x) = 1, min(x) = 0
# Run optimization op (backprop) and cost op (to get loss value)
_, c = sess.run([optimizer, cost], feed_dict={X: batch_xs})
# Display logs per epoch step
if epoch % display_step == 0:
print("Epoch:", '%04d' % (epoch+1),
"cost=", "{:.9f}".format(c))
print("Optimization Finished!")
# # Applying encode and decode over test set
encode_decode = sess.run(
y_pred, feed_dict={X: mnist.test.images[:examples_to_show]})
# Compare original images with their reconstructions
f, a = plt.subplots(2, 10, figsize=(10, 2))
for i in range(examples_to_show):
a[0][i].imshow(np.reshape(mnist.test.images[i], (28, 28)))
a[1][i].imshow(np.reshape(encode_decode[i], (28, 28)))
plt.show()
通过 5 个 Epoch 的训练,(通常情况下,想要得到好的的效果,我们应进行 10 ~ 20 个 Epoch 的训练)我们的结果如下:
上面一行是真实数据,下面一行是经过 encoder
和 decoder
之后的数据,如果继续进行训练,效果会更好。
类型二: Encoder
在类型二中,我们只显示 encoder
之后的数据, 并画在一个二维直角坐标系内。做法很简单,我们将原有 784 Features 的数据压缩成仅剩 2 Features 的数据:
# Parameters
learning_rate = 0.01 # 0.01 this learning rate will be better! Tested
training_epochs = 10 # 10 Epoch 训练
batch_size = 256
display_step = 1
通过四层 Hidden Layers 实现将 784 Features 压缩至 2 Features:
# hidden layer settings
n_hidden_1 = 128
n_hidden_2 = 64
n_hidden_3 = 10
n_hidden_4 = 2
Weights 和 biases 也要做相应的变化:
weights = {
'encoder_h1': tf.Variable(tf.truncated_normal([n_input, n_hidden_1],)),
'encoder_h2': tf.Variable(tf.truncated_normal([n_hidden_1, n_hidden_2],)),
'encoder_h3': tf.Variable(tf.truncated_normal([n_hidden_2, n_hidden_3],)),
'encoder_h4': tf.Variable(tf.truncated_normal([n_hidden_3, n_hidden_4],)),
'decoder_h1': tf.Variable(tf.truncated_normal([n_hidden_4, n_hidden_3],)),
'decoder_h2': tf.Variable(tf.truncated_normal([n_hidden_3, n_hidden_2],)),
'decoder_h3': tf.Variable(tf.truncated_normal([n_hidden_2, n_hidden_1],)),
'decoder_h4': tf.Variable(tf.truncated_normal([n_hidden_1, n_input],)),
}
biases = {
'encoder_b1': tf.Variable(tf.random_normal([n_hidden_1])),
'encoder_b2': tf.Variable(tf.random_normal([n_hidden_2])),
'encoder_b3': tf.Variable(tf.random_normal([n_hidden_3])),
'encoder_b4': tf.Variable(tf.random_normal([n_hidden_4])),
'decoder_b1': tf.Variable(tf.random_normal([n_hidden_3])),
'decoder_b2': tf.Variable(tf.random_normal([n_hidden_2])),
'decoder_b3': tf.Variable(tf.random_normal([n_hidden_1])),
'decoder_b4': tf.Variable(tf.random_normal([n_input])),
}
与类型一类似,创建四层神经网络。(注意:在第四层时,输出量不再是 [0,1] 范围内的数,而是将数据通过默认的 Linear activation function 调整为 (-∞,∞) :
def encoder(x):
layer_1 = tf.nn.sigmoid(tf.add(tf.matmul(x, weights['encoder_h1']),
biases['encoder_b1']))
layer_2 = tf.nn.sigmoid(tf.add(tf.matmul(layer_1, weights['encoder_h2']),
biases['encoder_b2']))
layer_3 = tf.nn.sigmoid(tf.add(tf.matmul(layer_2, weights['encoder_h3']),
biases['encoder_b3']))
layer_4 = tf.add(tf.matmul(layer_3, weights['encoder_h4']),
biases['encoder_b4'])
return layer_4
def decoder(x):
layer_1 = tf.nn.sigmoid(tf.add(tf.matmul(x, weights['decoder_h1']),
biases['decoder_b1']))
layer_2 = tf.nn.sigmoid(tf.add(tf.matmul(layer_1, weights['decoder_h2']),
biases['decoder_b2']))
layer_3 = tf.nn.sigmoid(tf.add(tf.matmul(layer_2, weights['decoder_h3']),
biases['decoder_b3']))
layer_4 = tf.nn.sigmoid(tf.add(tf.matmul(layer_3, weights['decoder_h4']),
biases['decoder_b4']))
return layer_4
在输出图像时,我们只关心 encoder
压缩之后,即 decoder
解压之前的结果:
如果你觉得这篇文章或视频对你的学习很有帮助,请你也分享它,让它能再次帮助到更多的需要学习的人。
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论