- Apache Flink 文档
- 概念
- 数据流编程模型
- 分布式运行时环境
- 教程
- API 教程
- DataStream API 教程
- Setup 教程
- 本地安装教程
- 在 Windows 上运行 Flink
- 例子
- 批处理示例
- 应用开发
- 项目构建设置
- Java 项目模板
- Scala 的项目模板
- 配置依赖关系,连接器,库
- 基础 API 概念
- Scala API 扩展
- Java Lambda 表达式
- Flink DataStream API 编程指南
- 活动时间
- 事件时间/处理时间/摄取时间
- 活动时间和水印
- 状态与容错
- 算子
- DataStream 转换
- 物理分区
- 任务链和资源组
- 流连接器
- 旁路输出
- Python 编程指南(流)Beta
- 测试
- 实验特点
- Flink DataSet API 编程指南
- 数据集转换
- 容错
- 在数据集中压缩数据元
- 迭代
- Python 编程指南 Beta
- 连接器
- Hadoop 兼容性测试版
- 本地执行
- 群集执行
- Table API 和 SQL
- 概念和通用 API
- 流处理概念
- 连接到外部系统
- Table API
- SQL
- 内置函数
- 用户定义的源和接收器
- 用户定义的函数
- SQL 客户端测试版
- 数据类型和序列化
- 为 Flink 程序注册自定义序列化程序
- 管理执行
- 执行配置
- 程序打包和分布式执行
- 并行执行
- 执行计划
- 重启策略
- 类库
- FlinkCEP - Flink 的复杂事件处理
- 风暴兼容性 Beta
- 项目配置
- 执行 Storm 拓扑
- 在 Flink 流程序中嵌入 Storm 算子
- Flink Extensions
- Storm 兼容性示例
- Gelly:Flink Graph API
- 图 API
- FlinkML - Flink 的机器学习
- 最佳实践
- API 迁移指南
- 部署和运营
- 集群和部署
- 独立群集
- YARN 设置
- Mesos 设置
- Kubernetes 设置
- Docker 设置
- 亚马逊网络服务(AWS)
- Google Compute Engine 设置
- 先决条件
- 在 Google Compute Engine 上部署 Flink
- MapR 设置
- Hadoop 集成
- JobManager 高可用性(HA)
- 状态和容错
- 检查点
- 保存点
- 状态后台
- 调整检查点和大状态
- 配置
- 生产准备清单
- 命令行界面
- Scala REPL
- Kerberos 身份验证设置和配置
- SSL 设置
- 文件系统
- 升级应用程序和 Flink 版本
- 调试和监控
- 度量
- 如何使用日志记录
- 历史服务器
- 监控检查点
- 监测背压
- 监控 REST API
- 调试 Windows 和事件时间
- 调试类加载
- 应用程序分析
- 使用 Java Flight Recorder 进行性能分析
- 使用 JITWatch 进行分析
- Flink Development
- 将 Flink 导入 IDE
- 从 Source 建立 Flink
- 内幕
- 组件堆栈
- 数据流容错
- 工作和调度
- 任务生命周期
- 文件系统
- 实现
- 坚持保证
- 更新文件内容
- 覆盖文件
- 线程安全
文章来源于网络收集而来,版权归原创者所有,如有侵权请及时联系!
坚持保证
这些 FileSystem
及其 FsDataOutputStream
实例用于持久存储数据,既用于应用程序的结果,也用于容错和恢复。因此,必须明确定义这些流的持久性语义。
持久性保证的定义
如果满足两个要求,则写入输出流的数据被认为是持久的:
- 可见性要求: 必须保证能够访问该文件的所有其他进程,计算机,虚拟机,容器等在给定绝对文件路径时始终看到数据。此要求类似于 POSIX 定义的 close-to-open 语义,但仅限于文件本身(通过其绝对路径)。
- 持久性要求: 必须满足文件系统的特定持久性/持久性要求。这些特定于特定文件系统。例如,{@link LocalFileSystem}不为硬件和 算子操作系统的崩溃提供任何持久性保证,而复制的分布式文件系统(如 HDFS)通常在出现 n 个 并发节点故障时保证持久性,其中 n 是复制因子。
不需要更新文件的父目录(以便在列出目录内容时显示文件),以使文件流中的数据被认为是持久的。对于目录内容的更新最终只是一致的文件系统来说,这种放松很重要。
在 FSDataOutputStream
必须保证数据的持久性,一旦调用写入的字节 FSDataOutputStream.close()
回报。
例子
- 对于 容错的分布式文件系统 ,一旦数据被 文件系统 接收和确认,数据就被认为是持久的,通常是通过复制到法定数量的机器( 持久性要求 )。此外,绝对文件路径必须对可能访问该文件的所有其他计算机可见( 可见性要求 )。
数据是否已达到存储节点上的非易失性存储取决于特定文件系统的特定保证。
对文件的父目录的元数据更新不需要达到一致状态。允许某些机器在列出父目录的内容时看到该文件而其他机器没有,只要在所有节点上都可以通过其绝对路径访问该文件。
- 一个 本地文件系统 必须支持 POSIX 贴近开放 语义。由于本地文件系统没有任何容错保证,因此不存在进一步的要求。
以上特别暗示,当从本地文件系统的角度考虑持久性时,数据可能仍然在 OS 高速缓存中。导致 算子操作系统缓存丢失数据的崩溃对本地计算机来说是致命的,并且不受 Flink 定义的本地文件系统保证的影响。
这意味着仅保证可以从本地计算机的故障中恢复仅写入本地文件系统的计算结果,检查点和保存点,从而使本地文件系统不适合生产设置。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论