7.7 add_subdirectory 的限定范围
NOTE : 此示例代码可以在 https://github.com/dev-cafe/cmake-cookbook/tree/v1.0/chapter-7/recipe-07 中找到,其中有一个 C++示例。该示例在 CMake 3.5 版(或更高版本) 中是有效的,并且已经在 GNU/Linux、macOS 和 Windows 上进行过测试。
本章剩下的示例中,我们将讨论构建项目的策略,并限制变量的范围和副作用,目的是降低代码的复杂性和简化项目的维护。这个示例中,我们将把一个项目分割成几个范围有限的 CMakeLists.txt 文件,这些文件将使用 add_subdirectory
命令进行处理。
准备工作
由于我们希望展示和讨论如何构造一个复杂的项目,所以需要一个比“hello world”项目更复杂的例子:
- https://en.wikipedia.org/wiki/Cellular_automaton#Elementary_cellular_automata
- http://mathworld.wolfram.com/ElementaryCellularAutomaton.html
我们的代码将能够计算任何 256 个基本细胞自动机,例如:规则 90 (Wolfram 代码):
我们示例代码项目的结构如下:
. ├── CMakeLists.txt ├── external │ ├── CMakeLists.txt │ ├── conversion.cpp │ ├── conversion.hpp │ └── README.md ├── src │ ├── CMakeLists.txt │ ├── evolution │ │ ├── CMakeLists.txt │ │ ├── evolution.cpp │ │ └── evolution.hpp │ ├── initial │ │ ├── CMakeLists.txt │ │ ├── initial.cpp │ │ └── initial.hpp │ ├── io │ │ ├── CMakeLists.txt │ │ ├── io.cpp │ │ └── io.hpp │ ├── main.cpp │ └── parser │ ├── CMakeLists.txt │ ├── parser.cpp │ └── parser.hpp └── tests ├── catch.hpp ├── CMakeLists.txt └── test.cpp
我们将代码分成许多库来模拟真实的大中型项目,可以将源代码组织到库中,然后将库链接到可执行文件中。
主要功能在 src/main.cpp
中:
#include "conversion.hpp" #include "evolution.hpp" #include "initial.hpp" #include "io.hpp" #include "parser.hpp" #include <iostream> int main(int argc, char *argv[]) { // parse arguments int length, num_steps, rule_decimal; std::tie(length, num_steps, rule_decimal) = parse_arguments(argc, argv); // print information about parameters std::cout << "length: " << length << std::endl; std::cout << "number of steps: " << num_steps << std::endl; std::cout << "rule: " << rule_decimal << std::endl; // obtain binary representation for the rule std::string rule_binary = binary_representation(rule_decimal); // create initial distribution std::vector<int> row = initial_distribution(length); // print initial configuration print_row(row); // the system evolves, print each step for (int step = 0; step < num_steps; step++) { row = evolve(row, rule_binary); print_row(row); } }
external/conversion.cpp
文件包含要从十进制转换为二进制的代码。
我们在这里模拟这段代码是由 src
外部的“外部”库提供的:
#include "conversion.hpp" #include <bitset> #include <string> std::string binary_representation(const int decimal) { return std::bitset<8>(decimal).to_string(); }
src/evolution/evolution.cpp
文件为一个时限传播系统:
#include "evolution.hpp" #include <string> #include <vector> std::vector<int> evolve(const std::vector<int> row, const std::string rule_binary) { std::vector<int> result; for (auto i = 0; i < row.size(); ++i) { auto left = (i == 0 ? row.size() : i) - 1; auto center = i; auto right = (i + 1) % row.size(); auto ancestors = 4 * row[left] + 2 * row[center] + 1 * row[right]; ancestors = 7 - ancestors; auto new_state = std::stoi(rule_binary.substr(ancestors, 1)); result.push_back(new_state); } return result; }
src/initial/initial.cpp
文件,对出进行初始化:
#include "initial.hpp" #include <vector> std::vector<int> initial_distribution(const int length) { // we start with a vector which is zeroed out std::vector<int> result(length, 0); // more or less in the middle we place a living cell result[length / 2] = 1; return result; }
src/io/io.cpp
文件包含一个函数输出打印行:
#include "io.hpp" #include <algorithm> #include <iostream> #include <vector> void print_row(const std::vector<int> row) { std::for_each(row.begin(), row.end(), [](int const &value) { std::cout << (value == 1 ? '*' : ' '); }); std::cout << std::endl; }
src/parser/parser.cpp
文件解析命令行输入:
#include "parser.hpp" #include <cassert> #include <string> #include <tuple> std::tuple<int, int, int> parse_arguments(int argc, char *argv[]) { assert(argc == 4 && "program called with wrong number of arguments"); auto length = std::stoi(argv[1]); auto num_steps = std::stoi(argv[2]); auto rule_decimal = std::stoi(argv[3]); return std::make_tuple(length, num_steps, rule_decimal); }
最后, tests/test.cpp
包含两个使用 Catch2 库的单元测试:
#include "evolution.hpp" // this tells catch to provide a main() // only do this in one cpp file #define CATCH_CONFIG_MAIN #include "catch.hpp" #include <string> #include <vector> TEST_CASE("Apply rule 90", "[rule-90]") { std::vector<int> row = {0, 1, 0, 1, 0, 1, 0, 1, 0}; std::string rule = "01011010"; std::vector<int> expected_result = {1, 0, 0, 0, 0, 0, 0, 0, 1}; REQUIRE(evolve(row, rule) == expected_result); } TEST_CASE("Apply rule 222", "[rule-222]") { std::vector<int> row = {0, 0, 0, 0, 1, 0, 0, 0, 0}; std::string rule = "11011110"; std::vector<int> expected_result = {0, 0, 0, 1, 1, 1, 0, 0, 0}; REQUIRE(evolve(row, rule) == expected_result); }
相应的头文件包含函数声明。有人可能会说,对于这个小代码示例,项目包含了太多子目录。请注意,这只是一个项目的简化示例,通常包含每个库的许多源文件,理想情况下,这些文件被放在到单独的目录中。
具体实施
让我们来详细解释一下 CMake 所需的功能:
CMakeLists.txt
顶部非常类似于第 1 节,代码重用与函数和宏:cmake_minimum_required(VERSION 3.5 FATAL_ERROR) project(recipe-07 LANGUAGES CXX) set(CMAKE_CXX_STANDARD 11) set(CMAKE_CXX_EXTENSIONS OFF) set(CMAKE_CXX_STANDARD_REQUIRED ON) include(GNUInstallDirs) set(CMAKE_ARCHIVE_OUTPUT_DIRECTORY ${CMAKE_BINARY_DIR}/${CMAKE_INSTALL_LIBDIR}) set(CMAKE_LIBRARY_OUTPUT_DIRECTORY ${CMAKE_BINARY_DIR}/${CMAKE_INSTALL_LIBDIR}) set(CMAKE_RUNTIME_OUTPUT_DIRECTORY ${CMAKE_BINARY_DIR}/${CMAKE_INSTALL_BINDIR}) # defines targets and sources add_subdirectory(src) # contains an "external" library we will link to add_subdirectory(external) # enable testing and define tests enable_testing() add_subdirectory(tests)
- 目标和源在
src/CMakeLists.txt
中定义(转换目标除外):add_executable(automata main.cpp) add_subdirectory(evolution) add_subdirectory(initial) add_subdirectory(io) add_subdirectory(parser) target_link_libraries(automata PRIVATE conversion evolution initial io parser )
- 转换库在
external/CMakeLists.txt
中定义:add_library(conversion "") target_sources(conversion PRIVATE ${CMAKE_CURRENT_LIST_DIR}/conversion.cpp PUBLIC ${CMAKE_CURRENT_LIST_DIR}/conversion.hpp ) target_include_directories(conversion PUBLIC ${CMAKE_CURRENT_LIST_DIR} )
src/CMakeLists.txt
文件添加了更多的子目录,这些子目录又包含CMakeLists.txt
文件。src/evolution/CMakeLists.txt
包含以下内容:add_library(evolution "") target_sources(evolution PRIVATE evolution.cpp PUBLIC ${CMAKE_CURRENT_LIST_DIR}/evolution.hpp ) target_include_directories(evolution PUBLIC ${CMAKE_CURRENT_LIST_DIR} )
- 单元测试在
tests/CMakeLists.txt
中注册:add_executable(cpp_test test.cpp) target_link_libraries(cpp_test evolution) add_test( NAME test_evolution COMMAND $<TARGET_FILE:cpp_test> )
- 配置和构建项目产生以下输出:
$ mkdir -p build $ cd build $ cmake .. $ cmake --build . Scanning dependencies of target conversion [ 7%] Building CXX object external/CMakeFiles/conversion.dir/conversion.cpp.o [ 14%] Linking CXX static library ../lib64/libconversion.a [ 14%] Built target conversion Scanning dependencies of target evolution [ 21%] Building CXX object src/evolution/CMakeFiles/evolution.dir/evolution.cpp.o [ 28%] Linking CXX static library ../../lib64/libevolution.a [ 28%] Built target evolution Scanning dependencies of target initial [ 35%] Building CXX object src/initial/CMakeFiles/initial.dir/initial.cpp.o [ 42%] Linking CXX static library ../../lib64/libinitial.a [ 42%] Built target initial Scanning dependencies of target io [ 50%] Building CXX object src/io/CMakeFiles/io.dir/io.cpp.o [ 57%] Linking CXX static library ../../lib64/libio.a [ 57%] Built target io Scanning dependencies of target parser [ 64%] Building CXX object src/parser/CMakeFiles/parser.dir/parser.cpp.o [ 71%] Linking CXX static library ../../lib64/libparser.a [ 71%] Built target parser Scanning dependencies of target automata [ 78%] Building CXX object src/CMakeFiles/automata.dir/main.cpp.o [ 85%] Linking CXX executable ../bin/automata [ 85%] Built target automata Scanning dependencies of target cpp_test [ 92%] Building CXX object tests/CMakeFiles/cpp_test.dir/test.cpp.o [100%] Linking CXX executable ../bin/cpp_test [100%] Built target cpp_test
- 最后,运行单元测试:
$ ctest Running tests... Start 1: test_evolution 1/1 Test #1: test_evolution ................... Passed 0.00 sec 100% tests passed, 0 tests failed out of 1
工作原理
我们可以将所有代码放到一个源文件中。不过,每次编辑都需要重新编译。将源文件分割成更小、更易于管理的单元是有意义的。可以将所有源代码都编译成一个库或可执行文件。实际上,项目更喜欢将源代码编译分成更小的、定义良好的库。这样做既是为了本地化和简化依赖项,也是为了简化代码维护。这意味着如在这里所做的那样,由许多库构建一个项目是一种常见的情况。
为了讨论 CMake 结构,我们可以从定义每个库的单个 CMakeLists.txt 文件开始,自底向上进行,例如 src/evolution/CMakeLists.txt
:
add_library(evolution "") target_sources(evolution PRIVATE evolution.cpp PUBLIC ${CMAKE_CURRENT_LIST_DIR}/evolution.hpp ) target_include_directories(evolution PUBLIC ${CMAKE_CURRENT_LIST_DIR} )
这些单独的 CMakeLists.txt
文件定义了库。本例中,我们首先使用 add_library
定义库名,然后定义它的源和包含目录,以及它们的目标可见性:实现文件( evolution.cpp
: PRIVATE
),而接口头文件 evolution.hpp
定义为 PUBLIC
,因为我们将在 main.cpp
和 test.cpp
中访问它。定义尽可能接近代码目标的好处是,对于该库的修改,只需要变更该目录中的文件即可;换句话说,也就是库依赖项被封装。
向上移动一层,库在 src/CMakeLists.txt
中封装:
add_executable(automata main.cpp) add_subdirectory(evolution) add_subdirectory(initial) add_subdirectory(io) add_subdirectory(parser) target_link_libraries(automata PRIVATE conversion evolution initial io parser )
文件在主 CMakeLists.txt
中被引用。这意味着使用 CMakeLists.txt
文件,构建我们的项目。这种方法对于许多项目来说是可用的,并且它可以扩展到更大型的项目,而不需要在目录间的全局变量中包含源文件列表。 add_subdirectory
方法的另一个好处是它隔离了作用范围,因为子目录中定义的变量在父范围中不能访问。
更多信息
使用 add_subdirectory
调用树构建项目的一个限制是,CMake 不允许将 target_link_libraries
与定义在当前目录范围之外的目标一起使用。对于本示例来说,这不是问题。在下一个示例中,我们将演示另一种方法,我们不使用 add_subdirectory
,而是使用 module include
来组装不同的 CMakeLists.txt
文件,它允许我们链接到当前目录之外定义的目标。
CMake 可以使用 Graphviz 图形可视化软件( http://www.graphviz.org ) 生成项目的依赖关系图:
$ cd build $ cmake --graphviz=example.dot .. $ dot -T png example.dot -o example.png
生成的图表将显示不同目录下的目标之间的依赖关系:
本书中,我们一直在构建源代码之外的代码,以保持源代码树和构建树是分开的。这是推荐的方式,允许我们使用相同的源代码配置不同的构建(顺序的或并行的,Debug 或 Release),而不需要复制源代码,也不需要在源代码树中生成目标文件。使用以下代码片段,可以保护您的项目免受内部构建的影响:
if(${PROJECT_SOURCE_DIR} STREQUAL ${PROJECT_BINARY_DIR}) message(FATAL_ERROR "In-source builds not allowed. Please make a new directory (called a build directory) and run CMake from there.") endif()
认识到构建结构与源结构类似很有用。示例中,将 message
打印输出插入到 src/CMakeLists.txt
中:
message("current binary dir is ${CMAKE_CURRENT_BINARY_DIR}")
在 build
下构建项目时,我们将看到 build/src
的打印输出。
在 CMake 的 3.12 版本中, OBJECT
库是组织大型项目的另一种可行方法。对我们的示例的惟一修改是在库的 CMakeLists.tx
t 中。源文件将被编译成目标文件:既不存档到静态库中,也不链接到动态库中。例如:
add_library(io OBJECT "") target_sources(io PRIVATE io.cpp PUBLIC ${CMAKE_CURRENT_LIST_DIR}/io.hpp ) target_include_directories(io PUBLIC ${CMAKE_CURRENT_LIST_DIR} )
主 CMakeLists.txt
保持不变: automata
可执行目标将这些目标文件链接到最终的可执行文件。使用也有要求需求,例如:在对象库上设置的目录、编译标志和链接库,将被正确地继承。有关 CMake 3.12 中引入的对象库新特性的更多细节,请参考官方文档: https://cmake.org/cmake/help/v3.12/manual/cmake-buildsystem.7.html#object-libraries
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论