- 莫烦机器学习教程
- 有趣的机器学习
- 机器学习 (Machine Learning)
- 神经网络 (Neural Network)
- 卷积神经网络 CNN (Convolutional Neural Network)
- 循环神经网络 RNN (Recurrent Neural Network)
- LSTM RNN 循环神经网络 (LSTM)
- 自编码 (Autoencoder)
- 检验神经网络 (Evaluation)
- 特征标准化 (Feature Normalization)
- 选择好特征 (Good Features)
- 激励函数 (Activation Function)
- 过拟合 (Overfitting)
- 加速神经网络训练 (Speed Up Training)
- 处理不均衡数据 (Imbalanced data)
- 批标准化 (Batch Normalization)
- L1 / L2 正规化 (Regularization)
- 强化学习 (Reinforcement Learning)
- 强化学习方法汇总 (Reinforcement Learning)
- Q Leaning
- Sarsa
- Sarsa(lambda)
- DQN
- Policy Gradients
- Actor Critic
- Deep Deterministic Policy Gradient (DDPG)
- Asynchronous Advantage Actor-Critic (A3C)
- 强化学习教程
- Why?
- 课程要求
- 小例子
- Q-learning 算法更新
- Q-learning 思维决策
- Sarsa 算法更新
- Sarsa 思维决策
- Sarsa-lambda
- DQN 算法更新 (Tensorflow)
- DQN 神经网络 (Tensorflow)
- DQN 思维决策 (Tensorflow)
- OpenAI gym 环境库 (Tensorflow)
- Double DQN (Tensorflow)
- Prioritized Experience Replay (DQN) (Tensorflow)
- Dueling DQN (Tensorflow)
- Policy Gradients 算法更新 (Tensorflow)
- Policy Gradients 思维决策 (Tensorflow)
- Actor Critic (Tensorflow)
- Deep Deterministic Policy Gradient (DDPG) (Tensorflow)
- Asynchronous Advantage Actor-Critic (A3C) (Tensorflow)
- TensorFlow 教程
- 为什么选 Tensorflow
- 安装
- 神经网络在干嘛
- 处理结构
- 例子 2
- Session 会话控制
- Variable 变量
- Placeholder 传入值
- 激励函数 Activation Function
- 例子 3 添加层 def add_layer()
- 例子 3 建造神经网络
- 例子 3 结果可视化
- 优化器 optimizer
- Tensorboard 可视化好帮手 1
- Tensorboard 可视化好帮手 2
- Classification 分类学习
- Dropout 解决 overfitting
- CNN 卷积神经网络 1
- CNN 卷积神经网络 2
- CNN 卷积神经网络 3
- Saver 保存读取
- RNN 循环神经网络
- RNN LSTM 循环神经网络 (分类例子)
- RNN LSTM (回归例子)
- RNN LSTM (回归例子可视化)
- 自编码 Autoencoder (非监督学习)
- scope 命名方法
- Batch Normalization 批标准化
- PyTorch 教程
- Why?
- 安装
- Torch 或 Numpy
- 变量 (Variable)
- 激励函数 (Activation)
- 关系拟合 (回归)
- 区分类型 (分类)
- 快速搭建法
- 保存提取
- 批训练
- Optimizer 优化器
- CNN 卷积神经网络
- RNN 循环神经网络 (分类)
- RNN 循环神经网络 (回归)
- AutoEncoder (自编码/非监督学习)
- DQN 强化学习
- GAN (Generative Adversarial Nets 生成对抗网络)
- 为什么 Torch 是动态的
- GPU 加速运算
- Dropout 缓解过拟合
- Batch Normalization 批标准化
- Theano 教程
- Why?
- 安装
- 神经网络在做什么
- 基本用法
- Function 用法
- Shared 变量
- Activation function 激励函数
- 定义 Layer 类
- Regression 回归例子
- 可视化结果 回归例子
- Classification 分类学习
- Regularization 正规化
- Save 保存 提取
- 总结和更多
- Keras 教程
- Why?
- 安装
- 兼容 backend
- Regressor 回归
- Classifier 分类
- CNN 卷积神经网络
- RNN Classifier 循环神经网络
- RNN Regressor 循环神经网络
- Autoencoder 自编码
- Save & reload 保存提取
- Scikit learn 教程
- Why?
- 安装
- 选择学习方法
- 通用学习模式
- sklearn 强大数据库
- sklearn 常用属性与功能
- 正规化 Normalization
- 交叉验证 1 Cross-validation
- 交叉验证 2 Cross-validation
- 交叉验证 3 Cross-validation
- 保存模型
为什么 Torch 是动态的
作者: Morvan 编辑: Morvan
- 学习资料:
听说过 Torch 的人都听说了 torch 是动态的,那他的动态到底是什么呢? 我们用一个 RNN 的例子来展示一下动态计算到底长什么样。
本节内容包括:
动态?静态?
对比静态动态,我们就得知道谁是静态的. 在流行的神经网络模块中, Tensorflow 就是最典型的静态计算模块. 下图是一种我在 强化学习教程 中的 Tensorflow 计算图. 也就是说,大部分时候,用 Tensorflow 是先搭建好这样一个计算系统,一旦搭建好了,就不能改动了 (也有例外,比如 dynamic_rnn()
, 但是总体来说他还是运用了一个静态思维), 所有的计算都会在这种图中流动,当然很多情况,这样就够了,我们不需要改动什么结构. 不动结构当然可以提高效率. 但是一旦计算流程不是静态的,计算图要变动. 最典型的例子就是 RNN, 有时候 RNN 的 time step 不会一样,或者在 training 和 testing 的时候, batch_size 和
time_step` 也不一样,这时, Tensorflow 就头疼了, Tensorflow 的人也头疼了. 哈哈,如果用一个动态计算图的 Torch, 我们就好理解多了,写起来也简单多了。
动态 RNN
我们拿 这一节内容的 RNN 来解释动态计算图. 那节内容的 代码在这 .
...
######################## 前面代码都一样,下面开始不同 #########################
################ 那节内容的代码结构 (静态 time step) ##########
for step in range(60):
start, end = step * np.pi, (step+1)*np.pi # time steps 都是一样长的
# use sin predicts cos
steps = np.linspace(start, end, 10, dtype=np.float32)
...
################ 这节内容修改代码 (动态 time step) #########
step = 0
for i in range(60):
dynamic_steps = np.random.randint(1, 4) # 随机 time step 长度
start, end = step * np.pi, (step + dynamic_steps) * np.pi # different time steps length
step += dynamic_steps
# use sin predicts cos
steps = np.linspace(start, end, 10 * dynamic_steps, dtype=np.float32)
####################### 这下面又一样了 ###########################
print(len(steps)) # print how many time step feed to RNN
x_np = np.sin(steps) # float32 for converting torch FloatTensor
y_np = np.cos(steps)
...
"""
输出的动态 time step 长
30
30
10
30
20
30
"""
经过这样的折腾, torch 还能 handle 住,已经很不容易啦. 所以当你想要处理这些动态计算图的时候, Torch 还是你首选的神经网络模块。
所以这也就是在我 github 代码 中的每一步的意义啦。
如果你觉得这篇文章或视频对你的学习很有帮助,请你也分享它,让它能再次帮助到更多的需要学习的人。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论