- 莫烦机器学习教程
- 有趣的机器学习
- 机器学习 (Machine Learning)
- 神经网络 (Neural Network)
- 卷积神经网络 CNN (Convolutional Neural Network)
- 循环神经网络 RNN (Recurrent Neural Network)
- LSTM RNN 循环神经网络 (LSTM)
- 自编码 (Autoencoder)
- 检验神经网络 (Evaluation)
- 特征标准化 (Feature Normalization)
- 选择好特征 (Good Features)
- 激励函数 (Activation Function)
- 过拟合 (Overfitting)
- 加速神经网络训练 (Speed Up Training)
- 处理不均衡数据 (Imbalanced data)
- 批标准化 (Batch Normalization)
- L1 / L2 正规化 (Regularization)
- 强化学习 (Reinforcement Learning)
- 强化学习方法汇总 (Reinforcement Learning)
- Q Leaning
- Sarsa
- Sarsa(lambda)
- DQN
- Policy Gradients
- Actor Critic
- Deep Deterministic Policy Gradient (DDPG)
- Asynchronous Advantage Actor-Critic (A3C)
- 强化学习教程
- Why?
- 课程要求
- 小例子
- Q-learning 算法更新
- Q-learning 思维决策
- Sarsa 算法更新
- Sarsa 思维决策
- Sarsa-lambda
- DQN 算法更新 (Tensorflow)
- DQN 神经网络 (Tensorflow)
- DQN 思维决策 (Tensorflow)
- OpenAI gym 环境库 (Tensorflow)
- Double DQN (Tensorflow)
- Prioritized Experience Replay (DQN) (Tensorflow)
- Dueling DQN (Tensorflow)
- Policy Gradients 算法更新 (Tensorflow)
- Policy Gradients 思维决策 (Tensorflow)
- Actor Critic (Tensorflow)
- Deep Deterministic Policy Gradient (DDPG) (Tensorflow)
- Asynchronous Advantage Actor-Critic (A3C) (Tensorflow)
- TensorFlow 教程
- 为什么选 Tensorflow
- 安装
- 神经网络在干嘛
- 处理结构
- 例子 2
- Session 会话控制
- Variable 变量
- Placeholder 传入值
- 激励函数 Activation Function
- 例子 3 添加层 def add_layer()
- 例子 3 建造神经网络
- 例子 3 结果可视化
- 优化器 optimizer
- Tensorboard 可视化好帮手 1
- Tensorboard 可视化好帮手 2
- Classification 分类学习
- Dropout 解决 overfitting
- CNN 卷积神经网络 1
- CNN 卷积神经网络 2
- CNN 卷积神经网络 3
- Saver 保存读取
- RNN 循环神经网络
- RNN LSTM 循环神经网络 (分类例子)
- RNN LSTM (回归例子)
- RNN LSTM (回归例子可视化)
- 自编码 Autoencoder (非监督学习)
- scope 命名方法
- Batch Normalization 批标准化
- PyTorch 教程
- Why?
- 安装
- Torch 或 Numpy
- 变量 (Variable)
- 激励函数 (Activation)
- 关系拟合 (回归)
- 区分类型 (分类)
- 快速搭建法
- 保存提取
- 批训练
- Optimizer 优化器
- CNN 卷积神经网络
- RNN 循环神经网络 (分类)
- RNN 循环神经网络 (回归)
- AutoEncoder (自编码/非监督学习)
- DQN 强化学习
- GAN (Generative Adversarial Nets 生成对抗网络)
- 为什么 Torch 是动态的
- GPU 加速运算
- Dropout 缓解过拟合
- Batch Normalization 批标准化
- Theano 教程
- Why?
- 安装
- 神经网络在做什么
- 基本用法
- Function 用法
- Shared 变量
- Activation function 激励函数
- 定义 Layer 类
- Regression 回归例子
- 可视化结果 回归例子
- Classification 分类学习
- Regularization 正规化
- Save 保存 提取
- 总结和更多
- Keras 教程
- Why?
- 安装
- 兼容 backend
- Regressor 回归
- Classifier 分类
- CNN 卷积神经网络
- RNN Classifier 循环神经网络
- RNN Regressor 循环神经网络
- Autoencoder 自编码
- Save & reload 保存提取
- Scikit learn 教程
- Why?
- 安装
- 选择学习方法
- 通用学习模式
- sklearn 强大数据库
- sklearn 常用属性与功能
- 正规化 Normalization
- 交叉验证 1 Cross-validation
- 交叉验证 2 Cross-validation
- 交叉验证 3 Cross-validation
- 保存模型
scope 命名方法
作者: Morvan 编辑: Morvan
- 学习资料:
- 不同 scope 对比代码
- reuse variable RNN 代码
- sharing variable tensorflow 官网介绍
scope 能让你命名变量的时候轻松很多. 同时也会在 reusing variable 代码中常常见到. 所以今天我们会来讨论下 tensorflow 当中的两种定义 scope 的方式. 最后并附加一个 RNN 运用 reuse variable 的例子。
tf.name_scope()
在 Tensorflow 当中有两种途径生成变量 variable, 一种是 tf.get_variable()
, 另一种是 tf.Variable()
. 如果在 tf.name_scope()
的框架下使用这两种方式,结果会如下。
import tensorflow as tf
with tf.name_scope("a_name_scope"):
initializer = tf.constant_initializer(value=1)
var1 = tf.get_variable(name='var1', shape=[1], dtype=tf.float32, initializer=initializer)
var2 = tf.Variable(name='var2', initial_value=[2], dtype=tf.float32)
var21 = tf.Variable(name='var2', initial_value=[2.1], dtype=tf.float32)
var22 = tf.Variable(name='var2', initial_value=[2.2], dtype=tf.float32)
with tf.Session() as sess:
sess.run(tf.initialize_all_variables())
print(var1.name) # var1:0
print(sess.run(var1)) # [ 1.]
print(var2.name) # a_name_scope/var2:0
print(sess.run(var2)) # [ 2.]
print(var21.name) # a_name_scope/var2_1:0
print(sess.run(var21)) # [ 2.0999999]
print(var22.name) # a_name_scope/var2_2:0
print(sess.run(var22)) # [ 2.20000005]
可以看出使用 tf.Variable()
定义的时候,虽然 name
都一样,但是为了不重复变量名, Tensorflow 输出的变量名并不是一样的. 所以,本质上 var2
, var21
, var22
并不是一样的变量. 而另一方面,使用 tf.get_variable()
定义的变量不会被 tf.name_scope()
当中的名字所影响。
tf.variable_scope()
如果想要达到重复利用变量的效果,我们就要使用 tf.variable_scope()
, 并搭配 tf.get_variable()
这种方式产生和提取变量. 不像 tf.Variable()
每次都会产生新的变量, tf.get_variable()
如果遇到了同样名字的变量时,它会单纯的提取这个同样名字的变量(避免产生新变量). 而在重复使用的时候,一定要在代码中强调 scope.reuse_variables()
, 否则系统将会报错,以为你只是单纯的不小心重复使用到了一个变量。
with tf.variable_scope("a_variable_scope") as scope:
initializer = tf.constant_initializer(value=3)
var3 = tf.get_variable(name='var3', shape=[1], dtype=tf.float32, initializer=initializer)
scope.reuse_variables()
var3_reuse = tf.get_variable(name='var3',)
var4 = tf.Variable(name='var4', initial_value=[4], dtype=tf.float32)
var4_reuse = tf.Variable(name='var4', initial_value=[4], dtype=tf.float32)
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
print(var3.name) # a_variable_scope/var3:0
print(sess.run(var3)) # [ 3.]
print(var3_reuse.name) # a_variable_scope/var3:0
print(sess.run(var3_reuse)) # [ 3.]
print(var4.name) # a_variable_scope/var4:0
print(sess.run(var4)) # [ 4.]
print(var4_reuse.name) # a_variable_scope/var4_1:0
print(sess.run(var4_reuse)) # [ 4.]
RNN 应用例子
RNN 例子的代码在 这里 , 整个 RNN 的结构已经在这里定义好了. 在 training RNN 和 test RNN 的时候, RNN 的 time_steps
会有不同的取值,这将会影响到整个 RNN 的结构,所以导致在 test 的时候,不能单纯地使用 training 时建立的那个 RNN. 但是 training RNN 和 test RNN 又必须是有同样的 weights biases 的参数. 所以,这时,就是使用 reuse variable 的好时机。
首先定义 training 和 test 的不同参数。
class TrainConfig:
batch_size = 20
time_steps = 20
input_size = 10
output_size = 2
cell_size = 11
learning_rate = 0.01
class TestConfig(TrainConfig):
time_steps = 1
train_config = TrainConfig()
test_config = TestConfig()
然后让 train_rnn
和 test_rnn
在同一个 tf.variable_scope('rnn')
之下. 并且定义 scope.reuse_variables()
, 使我们能把 train_rnn
的所有 weights, biases 参数全部绑定到 test_rnn
中. 这样,不管两者的 time_steps
有多不同,结构有多不同, train_rnn
W, b 参数更新成什么样, test_rnn
的参数也更新成什么样。
with tf.variable_scope('rnn') as scope:
sess = tf.Session()
train_rnn = RNN(train_config)
scope.reuse_variables()
test_rnn = RNN(test_config)
sess.run(tf.global_variables_initializer())
如果你觉得这篇文章或视频对你的学习很有帮助,请你也分享它,让它能再次帮助到更多的需要学习的人。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论